EXERCISE SET 3: TRIGONOMETRY ANSWER KEY

No Calculator

- 1. **7/2 or 3.5** The discussion in Lesson 9 about the definition of the sine function and the unit circle made it clear that the value of the sine function ranges from -1 to 1. Therefore, the maximum value of $\frac{8 \sin 2x}{2} \frac{1}{2}$ is $\frac{8(1)}{2} \frac{1}{2} = \frac{7}{2}$ or 3.5.
- 2. **1/36 or .027 or .028** An radian measure of $\pi/3$ is equivalent to 60°. If you haven't memorized the fact that $\cos(60^\circ) = \frac{1}{2}$, you can derive it from the Reference Information at the beginning of every SAT Math section, which includes the 30° - 60° - 90° special right triangle. Since $a = \frac{1}{2}$, $(a/3)^2 = (1/6)^2 = 1/36$.

3. 1.17	$(\sin x - \cos x)^2 = 0.83$
FOIL: s	$\sin^2 x - 2\sin x \cos x + \cos^2 x = 0.83$
Regroup: s	$\sin^2 x + \cos^2 x - 2\sin x \cos x = 0.83$
Simplify:	$1 - 2\sin x \cos x = 0.83$
Subtract 1:	$-2\sin x\cos x = -0.17$
Multiply by -1 :	$2\sin x \cos x = 0.17$
Evaluate this expression	on: $(\sin x + \cos x)^2$
FOIL:	$\sin^2 x + 2\sin x \cos x + \cos^2 x$
Regroup:	$\sin^2 x + \cos^2 x + 2\sin x \cos x$
Substitute:	1 + 0.17 = 1.17

4. **D** $\sin(\pi/6) = \frac{1}{2}$ and $\cos(\pi/3) = \frac{1}{2}$, so $\sin(\pi/6)/\cos(\pi/3) = 1$.

5. **D** If $\sin \theta < 0$, then θ must be either in quadrant III or in quadrant IV. (Remember that sine corresponds to the *y*-coordinates on the unit circle, so it is negative in those quadrants where the *y*-coordinates are negative.) If $\sin \theta \cos \theta < 0$, then $\cos \theta$ must be positive (because

a negative times a positive is a negative). Since $\cos\theta$ is only positive in quadrants I and IV (because cosine corresponds to the x-coordinates on the unit circle), θ must be in quadrant IV

- 6. **B** First, notice that a/b and b/a are reciprocals. Next, we can use the identity in Lesson 10 that $\sin x = \cos\left(\frac{\pi}{2} x\right)$ to see that choice (B) is just the reciprocal of $\sin x$. Alternately, we can just choose a value of x, like x = 1, and evaluate $\sin 1 = 0.841$. The correct answer is the expression that gives a value equal to the reciprocal of 0.841, which is 1/0.841 = 1.19. Plugging in x = 1 gives (A) 0.841, (B) 1.19, (C) 0.292, (D) 0.540.
- 7. **C** Recall from the Pythagorean Identity that $\cos b = \pm \sqrt{1-\sin^2 b}$. Substituting $\sin b = a$ gives $\cos b = \pm \sqrt{1-a^2}$. The angle $b + \pi$ is the reflection of angle b through the origin, so $\cos(b+\pi)$ is the opposite of $\cos b$, which means that $\cos(b+\pi) = \pm \sqrt{1-a^2}$.

8. D Recall from the Pythagorean Identity that

 $\cos^2 x = 1 - \sin^2 x.$ $\frac{\cos x}{1 - \sin^2 x} = \frac{3}{2}$ Substitute $\cos^2 x = 1 - \sin^2 x$: $\frac{\cos x}{\cos^2 x} = \frac{3}{2}$ Cancel common factor: $\frac{1}{\cos x} = \frac{3}{2}$ Reciprocate: $\cos x = \frac{2}{3}$