$5(5^x)^2$

 $5(5^{2x})$ 5^{2x+1}

EXERCISE SET 4 ANSWER KEY

No Calculator

1. 3	$2a^2 + 3a - 5a^2 = 9$
Simplify:	$3a - 3a^2 = 9$
Divide by 3:	$a-a^2=3$

2. **5**
$$(200)(4,000) = 800,000 = 8 \times 10^5$$

3. 1/8 or .125	$8w^2$
5. 1/6 Or .125	$\overline{(8w)^2}$
Exponential Law #5:	$\frac{8w^2}{64w^2}$
Cancel common factors:	$\frac{1}{8}$

4. 510	$5(2^{2x})+2^x$
Exponential Law #8:	$5(2^x)^2 + 2^x$
Substitute $2^x = 10$:	$5(10)^2 + 10$
Simplify:	$5(10)^2 + 10 = 510$

5. **64** If (x+2)(x+4)(x+6) = 0, then x = -2, -4, or -6. Therefore 2^{-x} could equal 2^2 , 2^4 , or 2^6 . The greatest of these is $2^6 = 64$.

6. 80	$\left(4+4\sqrt{2}\right)^2$
FOIL:	$(4)^2 + 2(4)(4\sqrt{2}) + (4\sqrt{2})^2$
Simplify:	$16 + 32\sqrt{2} + 32$
Simplify:	$48 + 32\sqrt{2}$

Therefore a = 48 and b = 32 and a + b = 80.

7. 8	$\frac{a}{3+\sqrt{5}} = \frac{3-\sqrt{5}}{b}$
Cross-multiply:	$ab = \left(3 + \sqrt{5}\right)\left(3 - \sqrt{5}\right)$
Simplify: Therefore $ab^{3/2} = 4^{3/2} = 8$	ab = 9 - 5 = 4

8. 5/3 or 1.66 or 1.67	$9^x = 25$
Substitute $9 = 3^2$:	$(3^2)^x = 25$
Exponential Law #8:	$3^{2x} = 25$
Take square root:	$3^x = 5$
Divide by 3:	$\frac{3^x}{3^1} = \frac{5}{3}$
Exponential Law #6:	$3^{x-1} = \frac{5}{3}$

		2(4a
9. B	g(4a,2b)	$(2b)^3$
	$\overline{g(a,b)}$	-2a
		$\overline{b^3}$

Simplify:	$=\frac{2(4a)}{(2b)^3} \times \frac{b^3}{2a}$
Simplify:	$=\frac{8ab^{3}}{16ab^{3}}=\frac{1}{2}$
10. C	$\frac{2^n \times 2^n}{2^n \times 2}$
Cancel common factor:	$\frac{2^n}{2^1}$
Exponential Law #6:	2^{n-1}
11. A	$3^m + 3^m + 3^m$
Combine like terms:	$3(3^{m})$
Exponential Law #4:	3^{m+1}
12. B	$5v^2$

Calculator

Factor:

Substitute $y = 5^x$:

Exponential Law #8:

Exponential Law #4:

$n^2 = \sqrt{64^4}$
$n^2 = (64^4)^{1/2}$
$n^2 = 64^2$

14. 5	$\frac{1}{10^m}$ < 0.000025
Scientific Notation:	$1 \times 10^{-m} < 2.5 \times 10^{-5}$

Substitution and checking makes it clear that m = 5 is the smallest integer that satisfies the inequality.

17. 6	$9\sqrt{12} - 4\sqrt{27} = n\sqrt{3}$
Divide by 5:	m = 7
Subtract 2:	5m = 35
Exponential Law #10:	5m + 2 = 37
Exponential Law #4:	$x^{5m+2} = x^{37}$
Exponential Law #8:	$(x^{3m})(x^{2m+2}) = x^{37}$
16. 7	$(x^m)^3(x^{m+1})^2 = x^{37}$
Subtract 1:	k = 2.5
Exponential Law #10:	k + 1 = 3.5
Exponential Law #4:	$3^{k+1} = 3^{3.5}$
Express as exponentials:	$3^{k+1} = 3^2 \times 3 \times 3^{\frac{1}{2}}$
Simplify:	$3^{k+1} = 9 \times 3\sqrt{3}$
Exponential Law #6:	$3^{1-(-k)} = 9\sqrt{27}$
15. 2.5	$\frac{3}{3^{-k}} = 9\sqrt{27}$

 $9\sqrt{4}\times\sqrt{3}-4\sqrt{9}\times\sqrt{3}=n\sqrt{3}$

Divide by $\sqrt{3}$: Simplify:	$9\sqrt{4} - 4\sqrt{9} = n$ $18 - 12 = 6 = n$	20. B
18. 6	$8^{\frac{1}{6}} = \left(2^{-\frac{1}{12}}\right)^{-n}$	Simplify:
Substitute $8 = 2^3$:	$(2^3)^{\frac{1}{6}} = (2^{-\frac{1}{12}})^{-n}$	Simplify:
Exponential Law #8:	$2^{\frac{1}{2}} = 2^{\frac{n}{12}}$	
Exponential Law #10:	$\frac{1}{2} = \frac{n}{12}$	Cancel common factor:
Multiply by 12:	6 = n	21. B Translate:
19. 1 < x ≤ 1.56	$0 < \frac{4}{5}x < \sqrt{x} < x$ $\frac{4}{5}x < \sqrt{x}$	Square both sides: Divide by $4x$:
Middle inequality:	$\frac{4}{5}x < \sqrt{x}$	
Square both sides:	$\frac{16}{25}x^2 < x$	22. D
Divide by <i>x</i> :	$\frac{16}{25}x < 1$	Factor terms:
(Since $x > 0$, we do not "swap" the i	nequality.)	47.000.00 1500.00.00
Multiply by 25/16:	$x < \frac{25}{16} = 1.563$	Cancel common factors Combine like terms:
Last inequality:	$\sqrt{x} < x$	
Square both sides:	$x < x^2$	23. B Pythagorean 7
Divide by x:	1 < x	
Therefore, <i>x</i> must be both greater the equal to 1.56.	nan 1 and less than or	Simplify: Subtract 1:
		Taka aguara raati

	4
20. B	$\frac{1}{2^{-2}(x+x)(x+x)}$
Simplify:	$\frac{4\times2^2}{(1-2)^2}$
	$(2x)^2$
Simplify:	$\frac{16}{4x^2}$
- Lorentenano e una e	$4x^2$
Cancel common factor:	$\frac{4}{x^2}$
21. B Translate:	$\sqrt{x} = 2x$
Square both sides:	$x = 4x^2$
Divide by 4x:	$\frac{1}{4} = x$
22. D	$\frac{2m\sqrt{2n} + m\sqrt{18n}}{m\sqrt{2}}$
Factor terms:	$\frac{2m\sqrt{2}\sqrt{n} + m\sqrt{9}\sqrt{2}\sqrt{n}}{\sqrt{n}}$
	$m\sqrt{2}$
Cancel common factors:	$2\sqrt{n} + \sqrt{9}\sqrt{n}$
Combine like terms:	$2\sqrt{n} + 3\sqrt{n} = 5\sqrt{n}$
23. B Pythagorean Theorem:	$1^2 + x^2 = \left(\sqrt{n}\right)^2$
Simplify:	$1 + x^2 = n$
Subtract 1:	$x^2 = n - 1$
Take square root:	$x = \sqrt{n-1}$