EXERCISE SET 4 ANSWER KEY

No Calculator

1. 4 It is helpful to plot these values on the number line and think:

The distance between 1 and 10 is 9, so clearly the number that is 9 more units to the left of 1, namely -8, is twice as far from 10 as it is from 1. However, this is a negative number so it can't be our answer. There is one other number that is twice as far from 10 as it is from 1: the number that is 1/3 the distance from 1 to 10. This number is 4, which is 3 units from 1 and 6 units from 10.

2. 16 From the Distance Formula,

Square root:

$$(2-14)^2 + (a-b)^2 = 20^2$$

 $144 + (a - b)^2 = 400$ Simplify:

 $(a-b)^2 = 256$ Subtract 144:

|a - b| = 16

3. 8

Since *n* must be positive for this statement to be true, we can multiply by 9n without having to "swap" the inequality symbols:

0 < 36 < 5n

0 < 7.2 < nDivide by 5:

Therefore, the smallest integer value of n is 8.

4. 1/2 or .5 Two numbers, a and b, have the same absolute value only if they are equal or opposites. Clearly x + 4 and x - 5 cannot be equal, since x - 5 is 9 less than x + 4. Therefore they must be opposites.

	x+4=-(x-5)
Distribute:	x+4=-x+5
Add x:	2x + 4 = 5
Subtract 4:	2x = 1
Divide by 2:	x = 1/2

5. 10	$n \setminus 1$
3. 10	$-\frac{1}{21} > -\frac{1}{2}$
Multiply by -42 and "swap:"	2n < 21
Divide by 2:	n < 10.5

Therefore, the greatest possible integer value of n is 10.

6. **3**
$$3b \ge 7.5$$

Divide by 3:
$$b \ge 2.5$$
 $\frac{1}{2} > \frac{3}{2}$

Since b is greater than or equal to 2.5, it is positive, so we can multiply both sides by 11b without "swapping" the inequality:

11 > 3b

3.67 > bDivide by 3:

The only integer between 2.5 and 3.67 is 3.

7. 3/2 or 1.5	$(b+2)^2 = (b-5)^2$
FOIL:	$b^2 + 4b + 4 = b^2 - 10b + 25$
Subtract b^2 :	4b + 4 = -10b + 25
Add 10 <i>b</i> :	14b + 4 = 25
Subtract 4:	14b = 21
Divide by 14:	b = 1.5

8. **A**
$$-4 < 2x \le 2$$

-2 < x < 1Divide by 2:

which is equivalent to -2 < x and x < 1.

9. A The profit is the revenue minus the cost: 65n - (20,000 + 10n) = 55n - 20,000.

10. C If Colin can read a maximum of 25 pages an hour, then in h hours he can read a maximum of 25hpages. If he has p pages left in a 250-page book, he has read 250 - p pages. Since it has taken him h hours to read these 250 - p pages, $250 - p \le 25h$.

11. **C**
$$|x-10| > 4|x-40|$$

It helps to sketch the number line and divide is into three sections: the numbers less than 10, the numbers between 10 and 40, and the numbers greater than 40.

CASE 1: x < 10. It should be clear that all numbers less than 10 are closer to 10 than they are to 40, so this set contains no solutions.

CASE 2: $10 < x \le 40$. If *x* is between 10 and 40, x - 10 is positive and x - 40 is negative, so |x - 10| = x - 10 and |x-40|=-(x-40).

Substitute:
$$|x-10| > 4|x-40|$$

Substitute: $x-10 > -4(x-40)$
Distribute: $x-10 > -4x+160$
Add 4x: $5x-10 > 160$
Add 10: $5x > 170$
Divide by 5: $x > 34$

0-	+1- :	gives		0 4	-		1	10	
50	This	OIMAG	110	-5/1	-	Y	<	411	
00	LIIIO	SIVUO	us	JI	-	n	-	TU.	٠

CASE 3: x > 40. If x is greater than 40, then both x - 10 and x - 40 are positive, so |x - 10| = x - 10 and |x - 40| = x - 40.

|x-10| > 4|x-40|

Substitute: x - 10 > 4(x - 40)

Distribute: x - 10 > 4x - 160

Add 10: x > 4x - 150

Subtract 4*x*: -3x > -150

Divide by -3 and "swap:" x < 50

So this gives us 40 < x < 50. When we combine this with the solutions from CASE 2, we get 34 < x < 50.

Calculator

12. **2** If |a-5| = 7, then either a-5=7 or a-5=-7, so either a=12 or a=-2. Since a<0, a must be -2, and |-2|=2.

13. **8** CASE 1: If 6 - 3n is positive, then

|6-3n|=6-3n, so

16 > 6 - 3n > 19

Subtract 6:

10 > -3n > 13

Divide by -3 and "swap:"

-10/3 < n < -13/3

But this contradicts the fact that *n* is positive.

CASE 2: If 6 - 3n is negative, then

|6-3n|=-(6-3n), so

16 > -(6 - 3n) > 19

Distribute:

16 > -6 + 3n > 19

Add 6:

22 > 3n > 25

Divide by 3:

7.33 > n > 8.33

And the only integer in this range is n = 8.

14. 7	20 - 2n > 5
Subtract 20:	-2n > -15
Divide by -2 and "swap:"	n < 7.5
	$\frac{2n}{3} > 4$
Multiply by 3:	2n > 12
Divide by 2:	n > 6
Since n must be an integer between	een 6 and 75 $n = 7$

15. **4.75** The distance from 3 to -1.5 is |3-(-1.5)|

= 4.5. Therefore the two numbers that are 4.5 away from 9.25 are 9.25 + 4.5 = 13.75 and 9.25 - 4.5 = 4.75.

16. $\frac{1}{2}$ or .5 If the equation is true for all values of x, let's choose a convenient value for x,

like $x = 1$.	2x+1 = 2 k-x
Substitute $x = 1$:	2(1)+1 =2 k-1
Simplify:	3 = 2 k-1
Divide by 2:	1.5 = k-1
Therefore	$\pm 1.5 = k - 1$
Add 1:	k = 2.5 or -0.5
Now try $x = 0$:	2(0)+1 =2 k-0
Simplify:	1 = 2 k
Divide by 2:	0.5 = k
Therefore	$\pm 0.5 = k$
Therefore, $k = -0.5$ and so $ k =$	= -0.5 = 0.5.

17. **C** Recall that the expression |x-2| means "the distance from x to 2," so the statement |x-2| < 1 means "The distance from x to 2 is less than 1." Therefore, the solution set is all of the numbers that are less than 1 unit away from 2, which are all the numbers between 1 and 3.

18. C	a+b $c+2b$
entities to almost reduce	$\frac{1}{2}$
Multiply by 2:	a+b>c+2b
Subtract b:	a > c + b

19. **B** The formal translation of this statement is |x-1|>|x-3|, which we can solve algebraically by considering three cases: (I) $x \le 1$, (II) $1 < x \le 3$, and (III) x > 3, but it is probably easier to just graph the number line and notice that the midpoint between 1 and 3, that is, 2, is the point at which the distance to 1 and the distance to 3 are equal. Therefore, the points that are farther from 1 than from 3 are simply the points to the right of this midpoint, or x > 2.

20. B	$4x^2 \ge 9$
Take square root:	$ 2x \ge 3$
If $x > 0$:	$2x \ge 3$
Divide by 2:	$x \ge 1.5$
If $x < 0$:	$2x \le -3$
Divide by 2:	$x \le -1.5$

21. **D** Notice that the midpoint of the segment shown is 3, and the graph shows all points that are less than 3 units in either direction. Therefore, |x - 3| < 3.

22. **B** (A) is untrue if x = 0, (C) is untrue for x = -2, and (D) is untrue if x = 0.5. But (B) is true for any real number.