EXERCISE SET 1 ANSWER KEY

No Calculator

1. 1	(1-(1-(1-2)))-(1-(1-(1-3)))
Parentheses:	(1-(1-(-1)))-(1-(1-(-2)))
Next parentheses:	(1-(2))-(1-(3))
Next parentheses:	(-1) - (-2)
Subtract:	-1+2=1
2. 9/2 or 4.5	6x - 14 = 40
Add 14:	6x = 54
Divide by 6:	x = 9
Multiply by $\frac{1}{2}$:	$\frac{1}{2}x = \frac{9}{2}$
2	$\frac{-x}{2} = \frac{1}{2}$

3. **22** Let n be the least of these numbers. The sum of four consecutive even numbers is therefore n + (n + 2) +(n+4)+(n+6)=76.

Simplify:	4n + 12 = 76
Subtract 12:	4n = 64
Divide by 4:	n = 16
Therefore the largest of these	numbers is $16 \pm 6 - 22$

Therefore the largest of these numbers is $10 + 6 = 22$.	
4. 28	$\frac{5}{2}x + 3 = 7$
Multiply by 4:	10x + 12 = 28
5. 7/6 or 1.16 or 1.17	x - 7 = -5x
Subtract x:	-7 = -6x
Divide by -6 :	$\frac{7}{6} = x$
6. 0	5d + 12 = 24
Subtract 24:	5d - 12 = 0
7. 5	$\frac{2y^2}{5} = y^2$
Subtract y ² :	$-\frac{3y^2}{5} = 0$ $y^2 = 0$
Multiply by $-5/3$:	$v^2 = 0$

8. C If xy = 36 and x and y are integers, then x and y are both factors of 36. In order to minimize the value of x - y, we must find the greatest separation between x and y. The greatest separation between a factor pair is 1 - 36 = -35.

Take square root:

Add 5:

9. A We should regard this as a "conversion" problem from m days into a corresponding number of dollars.

$$m \text{ days} \times \frac{b \text{ screens}}{n \text{ days}} \times \frac{c \text{ dollars}}{1 \text{ screen}} = \frac{bcm}{n}$$

10. B	Original expression:	$5x(2x\times 3)-5x^2$
Parent	heses:	$5x(6x)-5x^2$
Multip	ly:	$30x^2 - 5x^2$
Subtrac	ct: Training of the errors	$25x^{2}$

Remember: The Law of Distribution does not apply in the first step, because the grouped expression doesn't include addition or subtraction.

11. D The simplest approach is perhaps to choose simple values for x and y, like 2 and 3, and see which operator yields a true equation. Since $(2 \div 3) \times (3 \div 2) = 1$, the answer is (D).

Calculator

y = 0

y + 5 = 5

12. 45	a - b = 4
	a + b = 14
Add equations:	2a = 18
Divide by 2:	a = 9
Substitute $a = 9$:	9 + b = 14
Subtract 9:	b = 5
Evaluate <i>ab</i> :	$ab = 9 \times 5 = 45$

13. 1	x + y - 1 = 1 - (1 - x)
Distribute:	x + y - 1 = 1 - 1 + x
Subtract <i>x</i> :	y - 1 = 1 - 1
Simplify:	y - 1 = 0
Add 1:	y = 1
14. 200	$3x^2 + 2x = 40$

14. 200	$3x^2 + 2x = 40$
Multiply by 5:	$15x^2 + 10x = 200$

15. **12** Let e = Ellen's current age and m = Maria'scurrent age.

Ellen is twice as old as Maria: $m+6=\frac{2}{3}(e+6)$ In 6 years, Maria will be 2/3 as old as Ellen: $m+6=\frac{2}{3}(2m+6)$ Substitute e = 2m:

Multiply by 3: 3m + 18 = 2(2m + 6)Distribute: 3m + 18 = 4m + 12Subtract 3m and 12: 6 = m

Therefore e = 2m = 2(6) = 12.

16. **15** First equation: 2x - 2y = 5 Divide by 2: x - y = 2.5 Second equation: x + y = 6 Multiply: $(x - y)(x + y) = x^2 - y^2 = (2.5)(6) = 15$

Alternately, we could solve the system using either substitution or linear combination and get x = 4.25 and y = 1.75, and evaluate $x^2 - y^2 = (4.25)^2 - (1.75)^2 = 18.0625 - 3.0625 = 15$.

17. **B** The revenue is equal to the number of items sold times the price per item. If the restaurant typically sells n sandwiches per day, but today sold 50% more, it sold 1.5n sandwiches. If the price p was reduced 30%, today's price is 0.70p. Therefore, the total revenue is (1.5n)(0.70p) = 1.05np.

18. B	4x(x) - 3xy(2x)
Multiply:	$4x^2-6x^2y$
Largest common factor:	$2x^2(2-3y)$

19. **D** Although a calculator is permitted for this question, most calculators will give an "overflow error" when trying to calculate numbers like 99¹⁰⁰, because they're

just too large. However, comparing these numbers is straightforward if we can express them in a common format.

$$a = 60(99)^{99} + 30(99)^{99}$$
 $= 90(99)^{99}$
 $b = 99^{100}$ $= 99(99)^{99}$
 $c = 90(90)^{99}$ $= 90(90)^{99}$

20. A Only statement I is true, by the Commutative and Associative Laws of Addition. Choosing simple values like x = 1, y = 2, and z = 3 will demonstrate that statements II and III do not yield true equations.

21. **C** Let x = the number of dollars David had to start. If Carlos started with twice as much money as David, then Carlos started with 2x dollars. After Carlos gave David \$12, Carlos had 2x - 12 dollars and David had x + 12 dollars. If Carlos still had \$10 more than David, then

Simplify:
$$2x - 12 = 10 + x + 12$$

 $2x - 12 = x + 22$
Add 12: $2x = x + 34$
Subtract x : $x = 34$

Therefore, David started with \$34 and Carlos started with 2(\$34) = \$68, so they had \$34 + \$68 = \$102 combined to start.